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SUMMARY

We describe here a collocated finite volume scheme that was recently developed for the numerical
simulation of the incompressible Navier–Stokes equations on unstructured meshes, in two or three space
dimensions. We recall its convergence in the case of the linear Stokes equations, and we prove a convergence
theorem for the case of the Navier–Stokes equations under the Boussinesq hypothesis. We then present
several numerical studies. A comparison between a cluster-type stabilization technique and the more
classical Brezzi–Pitkäranta method is performed, the numerical convergence properties are presented on
both analytical solutions and benchmark problems, and the scheme is finally applied to the study of the
natural convection between two eccentric cylinders. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical schemes for the incompressible Navier–Stokes equations have been extensively studied:
see [1–4] and references therein. An advantage of the finite volume schemes is that the unknowns
are approximated by piecewise constant functions, this makes it easy to take into account additional
nonlinear phenomena or the coupling with algebraic or differential equations, for instance in the
case of reactive flows; in particular, one can find in [5, 6] the presentation of the classical finite
volume scheme on rectangular meshes, which has been the basis of many industrial applications.
Proofs of the convergence of the so-called ‘MAC scheme’ [7] were performed for the Stokes and
Navier–Stokes equations, see [8, 9] and references therein. However, the use of rectangular grids
causes an important limitation to the type of domain that can be gridded and more recently, finite

∗Correspondence to: Raphaèle Herbin, Université de Provence, LATP, UMR 6632, 39 rue Joliot Curie, 13453
Marseille 13, France.

†E-mail: raphaele.herbin@cmi.univ-mrs.fr

Copyright q 2007 John Wiley & Sons, Ltd.



2046 E. CHÉNIER ET AL.

volume schemes for the Navier–Stokes equations on triangular grids have been presented, either
staggered [10] or collocated [11] where primal variables are used with a Chorin-type projection
method to ensure the divergence condition. Since staggered schemes have the reputation of being
the most stable schemes for incompressible flows, our idea was to generalize the MAC scheme to
triangular meshes. Hence we considered a scheme where the velocity unknowns were associated
with the control volumes of the mesh, and the ‘classical’ four points cell-centered scheme [12, 13]
was applied to discretize the Laplacian of the velocities, while a Galerkin expansion was introduced
for the pressure, with the pressure unknowns associated with the vertices of the mesh. Some
interesting stability and convergence properties were obtained for this scheme [14–18]. However,
we were not able to generalize the scheme to the three-dimensional case. We then developed and
studied a collocated scheme [19, 20], where velocities and pressure are all collocated within the
control volume.

We present here a generalization of this scheme to the complete problem of the incompressible
Navier–Stokes equations coupled with the energy conservation under the Boussinesq hypothesis.
As mentioned in the introduction, the unknowns are chosen to be collocated; it is well known that
the resulting scheme is non-elliptic (see e.g. [21]) unless a stabilization technique is used. In the
present paper, we study two techniques of stabilization. The first one is a Brezzi–Pitkäranta-type
stabilization [22], and the second one is based on the local redistribution of the fluid mass within
clusters of control volumes. Both techniques lead to a modified discrete divergence operator. The
discretization of the pressure gradient in the momentum balance equation is then performed to
ensure, by construction, that it is the transpose of the discrete divergence term of the mass balance
equation without stabilization. Finally, the contribution of the discrete nonlinear advection term to
the kinetic energy balance vanishes for the modified discrete divergence-free velocity fields, as in
the continuous case. These features appear to be essential in the theoretical proof of convergence.

This paper is organized as follows. In Section 2, we present the finite volume discretization
framework that we apply to the linear Stokes problem. Then, in Section 3, we present the adaptation
of the scheme to the non-linear problem resulting from the steady Navier–Stokes equations under the
Boussinesq hypothesis. We then state a convergence theorem for the scheme in this framework.
We then discuss and compare the stabilization methods in Section 4 on a numerical example,
illustrate the convergence properties on both analytical solutions and benchmark problems and
present original numerical results obtained in the case of the natural convection between two
eccentric cylinders.

2. PRINCIPLES OF THE COLLOCATED SCHEME APPLIED TO THE LINEAR CASE

In this section, we first give all the tools necessary for the definition of the schemes, followed by
their application to the framework of the linear Stokes problem.

2.1. Admissible meshes, discrete spaces, and operators

Let � be an open-bounded polygonal subset or Rd . We consider admissible meshesD= (M,E,P)

in the sense of [13], that is: M is a partition of � by polygonal (or polyhedral) convex subsets
of Rd , E is the set of edges of these subsets, and P= (xK )K∈M is a set of points satisfying the
usual orthogonality condition (see Figure 1). The following notations are used. The size of the
discretization is defined by hD = sup{diam(K ), K ∈M}. The set of interior (resp. boundary) edges
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Figure 1. Notations for an admissible mesh.

is denoted by Eint (resp. Eext), that is, Eint ={� ∈E; � /⊂ ��} (resp. Eext ={� ∈E; � ⊂ ��}). For
any edge �∈E, we denote by m� the length or area of �. For all K ∈M and � ∈EK (the set of
edges of K ), we denote by nK ,� the unit vector normal to � outward to K and we denote by dK ,�
the Euclidean distance between xK and �. For all K ∈M, we denote by mK the surface or volume
of K , NK the subset of M of the neighboring control volumes. For all K ∈M and L ∈NK ,
we denote by K |L ∈EK ∩EL the common edge of K and L; we then set nK L =nK ,K |L , and we
denote by dK |L = dK ,K |L + dL ,K |L the Euclidean distance between xK and xL . We shall measure
the regularity of the mesh through the function regul(D) defined by

regul(D) = inf

{
dK ,�

diam(K )
, K ∈M, � ∈EK

}

∪
{
dK ,K |L
dK |L

, K ∈M, L ∈NK

}
∪
{

1

card(EK )
, K ∈M

}
(1)

We then denote by HD(�) ⊂ L2(�) the space of functions which are piecewise constant on each
control volume K ∈M. For any u ∈ HD(�) and for all K ∈M, we denote by uK the constant
value of u in K and we define the discrete finite volume Laplacian �Du ∈ HD(�) (corresponding
to the homogeneous Dirichlet boundary conditions), such that for all K ∈M, the constant value
�K u of �Du in K is given by

�K u = 1

mK

( ∑
L∈NK

mK |L
dK |L

(uL − uK ) + ∑
�∈EK∩Eext

m�

dK ,�
(0 − uK )

)
(2)

Note that this approximation is indeed obtained by a finite volume principle; in fact, for a continuous
function u ∈C2(�), integrating �u over a control volume K and using the Gauss divergence
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theorem and decomposing the boundary �K of K into its edges (�K= ∪�∈EK �) yields∫
K

�u(x) dx=
∫

�K
∇u(x) · nK (x) d�(x)= ∑

�∈EK

∫
�
∇u(x) · nK ,� d�(x)

where nK (resp. nK ,�) denotes the outward unit normal vector to �K (resp. unit normal vector
to � outward to K ) and d� denotes the integration sign on the boundary. Under the orthogonality
condition on the mesh, the quotients (u(xL) − u(xK ))/dK |L and (0 − u(xK ))/dK ,� are consistent
finite difference approximations of ∇u(x) · nK ,� on � = K |L and � ∈EK ∩Eext. This motivates
the choice of the approximate Laplacian (2).

Following the continuous framework, we define the following inner product of two elements
v, w of the space HD(�):

[v,w]D = −
∫

�
w(x)�Dv(x) dx= −

∫
�

v(x)�Dw(x) dx

= 1

2

∑
K∈M

∑
L∈NK

mK |L
dK |L

(vL − vK )(wL − wK ) + ∑
K∈M

∑
�∈EK∩Eext

m�

dK ,�
vKwK (3)

The corresponding norm of w ∈ HD(�), denoted by

‖w‖D = ([w,w]D)1/2

satisfies the discrete Poincaré inequality (see e.g. [13]), given by

‖w‖L2(�)�diam(�)‖w‖D ∀w ∈ HD(�) (4)

For any continuous function �, we define the interpolation PD�∈ HD(�) by

(PD�)K =�(xK ) for all K ∈M (5)

Similarly, for u= (u(i))i=1,...,d ∈ (HD(�))d , v= (v(i))i=1,...,d ∈ (HD(�))d , andw= (w(i))i=1,...,d ∈
(HD(�))d , we define

‖u‖D =
(

d∑
i=1

[u(i), u(i)]D
)1/2

, [v,w]D =
d∑

i=1
[v(i), w(i)]D

and, for all vector field u given by d continuous components, we define PDu∈ HD(�)d by
(PDu)K =u(xK ), for all K ∈M.

Next, we wish to define a discrete divergence operator which approximates the continuous
divergence term ∇ · (z u), where z is a scalar function from � to R (say a concentration or a
temperature) and u is a vector function, from � to Rd (typically a velocity). Again using the Gauss
divergence theorem, we obtain∫

K
div(z u) =

∫
�K

z u · nK d�(x) = ∑
�∈EK

∫
�
z u · nK ,� d�(x)

Assuming the homogeneous Dirichlet boundary condition for u, a natural (centred) finite volume
approximation of the divergence of z u is therefore div0D(z, u) ∈ HD(�) such that for all K ∈M,
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its constant value div0K (z, u) on K is given by

div0K (z, u) = 1

mK

∑
L∈NK

mK |L
dK |L

nK L · (dL ,K |LuK + dK ,K |LuL)
zK + zL

2
(6)

where z ∈ HD(�) and u∈ HD(�)d are the sought approximations of z and u. However, since
the approximations of the velocity and the pressure fields are collocated, we are led to define a
modified discrete divergence operator which involves a family of stabilization parameters, denoted
by �, and the pressure field. Hence, for a velocity field u∈ HD(�)d , for a pressure field p ∈ HD(�),
for a scalar field z ∈ HD(�), we define the discrete divergence operator divD(z,u, �, p) ∈ HD(�)

such that for all K ∈M, its constant value divK (z, u, �, p) on K is given by

divK (z,u, �, p) = 1

mK

∑
L∈NK

�K L(u, �, p)
zK + zL

2

with

�K L(u, �, p) = mK |L
dK |L

(nK L · (dL ,K |LuK + dK ,K |LuL) − �K |L(pL − pK )) ∀L ∈NK (7)

where � = (��)�∈Eint is a given family of non-negative real numbers. Our first choice of stabilization
consists in choosing � as

�� = �h�
D ∀� ∈Eint (8)

for a given �>0 and � ∈ (0, 2); this yields a stabilization term à la Brezzi–Pitkäranta [22]. Our
second choice of stabilization consists in choosing a strictly positive value � and introducing a
partition of M, denoted by C; the elements of C, called clusters in this paper, are subsets of M:
examples are shown in Figures 3 and 11. We then set

�K |L = � if there exists G ∈C with {K , L} ⊂G

�K |L = 0 otherwise
(9)

Several algorithms can be used for partitioning M. One can initialize the clusters by all the control
volumes neighboring some initial given control volumes as in the example presented in Figure 3
or by all control volumes having a common vertex as in the example presented in Figure 11.
Then, the isolated remaining control volumes are included in the cluster, which already contains
the greatest number of its neighbors.

Note that in (7) as well as in (6), the velocity field between the two control volumes K and
L is interpolated in order to ensure an optimal error estimate (see [19]). For all v∈ HD(�)d , the
approximation divD(v,u, �, p) of div(v̄⊗ ū) is obtained by replacing in (7) the scalars zK and zL
by the vectors vK and vL , that is,

divK (v,u, �, p) = 1

mK

∑
L∈NK

�K L(u, �, p)
vK + vL

2
(10)

Finally, let us define a discrete gradient operator as the adjoint of the non-stabilized divergence op-
erator given in (6); for any discrete field p ∈ HD(�), we define its discrete gradient ∇D p ∈ HD(�)d :∫

�
∇D p(x) · v(x) dx=−

∫
�
p(x) div0D(1, v)(x) dx ∀v ∈ HD(�)d
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This implies the following definition for the constant value ∇K p of ∇D p in K ∈M:

∇K p= 1

mK

∑
L∈NK

dL ,K |L
dK |L

mK |LnK L(pL − pK ) (11)

Defining p� = (dK ,K |L/dK |L)pK + (dL ,K |L/dK |L)pL if � = K |L (note that this interpolation is
not natural, contrary to that of (6) or (7)), and p� = pK if � ∈Eext ∩EK , and using the fact that∑

�∈EK
m�nK ,� = 0, one notices that ∇K p may also be written as

∇K p= 1

mK

∑
�∈EK

m� p�nK ,� (12)

Using the above definitions, we are now able to write the scheme for the linear Stokes equations
in the next section. The extension to a nonlinear case is performed in Section 3.

2.2. The finite volume scheme in the linear case

Consider the generalized stationary Stokes equations on � ⊂ Rd obtained after a time discretization
of the unsteady Stokes problem:

�ū − ��ū + ∇ p̄ = f

div ū= 0
(13)

where � is the kinematic viscosity, � is a frequency depending on the time scheme, ū= (ūi )i=1,...,d
denotes the velocity field, d is the space dimension, and p̄ the pressure field, with the following
assumptions:

� is a polygonal open bounded connected subset of Rd , d = 2 or 3 (14)

� ∈ (0,+∞), � ∈ [0,+∞), f∈ L2(�)d (15)

Assuming the homogeneous Dirichlet boundary condition for ū on ��, the weak formulation of
(13) is given by

ū∈ H1
0 (�)d , p̄ ∈ L2(�) with

∫
�
p̄(x) dx= 0

�
∫

�
ū(x) · v̄(x) dx + �

∫
�

∇ū(x) : ∇v̄(x) dx −
∫

�
p̄(x)div v̄(x) dx

=
∫

�
f(x) · v̄(x) dx ∀v̄∈ H1

0 (�)d

div ū(x) = 0 for a.e. x∈ �

(16)
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Let D be an admissible discretization of �. For a given family of non-negative real numbers
� = (��)�∈Eint , we look for (u, p) such that

(u, p) ∈ HD(�)d × HD(�) with
∫

�
p(x) dx= 0

�
∫

�
u(x) · v(x) dx + � [u, v]D −

∫
�
p(x) div0D(1, v)(x) dx

=
∫

�
f(x) · v(x) dx ∀v∈ HD(�)d

divD(1,u, �, p)(x) = 0 for a.e. x ∈ �

(17)

System (17) is equivalent to finding the family of vectors (uK )K∈M ⊂ Rd , and scalars (pK )K∈M
⊂ R solution of the system of equations obtained by writing for each control volume K of M:

�uK − ��Ku + ∇K p = 1

mK

∫
K
f(x) dx

divK (1,u, �, p) = 0

(18)

supplemented by the relation ∑
K∈M

mK pK = 0 (19)

Thanks to definition (2) and to relation (12), we see that (18) can be written in a conservative
form that indicates this scheme is indeed a finite volume scheme. We can then prove (see [20]
for details) that if (u, p) ∈ HD(�)d × HD(�) is a solution to (17), then the following inequalities
hold:

�‖u‖D�diam(�)‖f‖(L2(�))d (20)

and

1

2

∑
K∈M

∑
L∈NK

mK |L
dK |L

�K |L(pL − pK )2�diam(�)

�
‖f‖2

(L2(�))d
(21)

We now give some consequences of these a priori estimates, restricting our study to the case
where there exists some �>0 and � ∈ (0, 2) such that (8) holds (note that under some geometrical
assumptions on the mesh, convergence may also be proved for the stabilization by clusters, see
[23, 24]). We then get the uniqueness of a discrete solution to (17), and, using the Nečas technique,
we can prove the following estimate on the pressure:

‖p‖L2(�)�C1‖f‖(L2(�))d (22)

where C1 only depends on d , �, �, �, �, � and on any �>0 such that regul(D)�� and not on hD.
From these estimates, and thanks to some estimates on the translates that may be obtained in a

similar way as in [13], we obtain compactness properties of sequences of approximate solutions, as
the mesh size tends to 0. Passing to the limit in the scheme, we then get the following convergence
result [20].
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Theorem 2.1 (Convergence)
Under hypotheses (14)–(15), let (ū, p̄) be the unique weak solution of the Stokes problem (13).
Let � ∈ (0,+∞), � ∈ (0, 2), and �>0 be given and let D be an admissible discretization of �
such that regul(D)�� (see definitions in Section 2.1). Let (uD, pD) ∈ HD(�)d × HD(�) be the
unique solution to (17) with � defined by (8). Then uD converges to ū in L2(�)d and pD weakly
converges to p̄ in L2(�) as hD tends to 0.

Note that the proof of the strong convergence of pD to p̄ is also a straightforward consequence
of the error estimate that we now state (also given in [20]), under additional regularity hypotheses.

Theorem 2.2 (Error estimate)
Under hypotheses (14)–(15), we assume that the weak solution (ū, p̄) of the Stokes problem (13),
i.e. satisfying (16) is such that (ū, p̄) ∈ H2(�)d × H1(�). Let � ∈ (0,+∞) and � ∈ (0, 2) be given,
let D be an admissible discretization of �, and let �>0 such that regul(D(m))�� (see definitions
in Section 2.1). Let (uD, pD) ∈ HD(�)d × HD(�) be the solution to (17) with � defined by (8).
Then there exists C2, which only depends on d , �, �, � and � such that

‖uD − ū‖2L2(�)
�C2	(�, hD, p̄, ū) (23)

�h�
D|pD|2D�C2	(�, hD, p̄, ū) (24)

‖pD − p̄‖2L2(�)
�C2	(�, hD, p̄, ū) (25)

where

	(�, hD, p̄, ū) = max

(
�h�

D,
h2−�
D

�

)
(‖ p̄‖2H1(�)

+ ‖ū‖2H2(�)
) (26)

Hence, for � = 1 we obtain an order 1
2 for the convergence of the scheme. In fact, this result is

not sharp, and the numerical results show a much better order of convergence.

3. THE NAVIER–STOKES EQUATIONS UNDER THE BOUSSINESQ APPROXIMATION

Let us consider in this section the case of the steady equations obtained after a time discretization
of the Navier–Stokes and energy equations, under the Boussinesq hypotheses:

�ū − ��ū + ∇ p̄ + div(ū⊗ ū) = f + T̄w in �

div ū= 0 in �

�T̄ − 
�T̄ + div(T̄ ū) = g in �

(27)

with homogeneous Dirichlet boundary conditions on ū and T̄ , assumptions (14)–(15) on �, �, �,
and f and with 
 the thermal diffusivity, w and g such that


∈ (0,+∞), w∈ Rd , g ∈ L2(�) (28)
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Then we say that (ū, p̄, T̄ ) is a weak solution of (27) if

ū∈ H1
0 (�)d , p̄ ∈ L2(�) with

∫
�
p̄(x) dx= 0, T̄ ∈ H1

0 (�)∫
�
(�ū(x) + div(ū⊗ ū)(x)) · v̄(x) dx + �

∫
�

∇ū(x) : ∇v̄(x) dx

−
∫

�
p̄(x) div v̄(x) dx=

∫
�
(f(x) + T̄ (x)w) · v̄(x) dx ∀v̄∈ H1

0 (�)d∫
�
(�T̄ (x) + div(T̄ ū)(x))S̄(x) dx + 


∫
�

∇ T̄ (x) · ∇ S̄(x) dx

=
∫

�
g(x)S̄(x) dx ∀S̄ ∈ H1

0 (�)

div ū(x)= 0 for a.e. x ∈ �

(29)

We now give the finite volume scheme for this problem. Under hypotheses (14)–(15) and (28),
let D be an admissible discretization of �. For a given family of non-negative real numbers
� = (��)�∈Eint , we look for (u, p, T ) such that

(u, p, T ) ∈ HD(�)d × HD(�) × HD(�) with
∫

�
p(x) dx= 0

� [u, v]D +
∫

�
(�u(x) + divD(u,u, �, p)(x)) · v(x) dx −

∫
�
p(x) div0D(1, v)(x) dx

=
∫

�
(f(x) + T (x)w) · v(x) dx ∀v∈ HD(�)d

divD(1,u, �, p) = 0


[T, S]D +
∫

�
(�T (x) + divD(T,u, �, p)(x))S(x) dx=

∫
�
g(x)S(x) dx ∀S ∈ HD(�)

(30)

Note that the relation divD(1,u, �, p) = 0 implies∫
�
v(x) · divD(u, u, �, p)(x) dx= −

∫
�
u(x) · divD(v,u, �, p)(x) dx∫

�
S(x) divD(T,u, �, p)(x) dx= −

∫
�
T (x) divD(S,u, �, p)(x) dx

(31)

which shows that the discrete versions of the operators behave as the continuous ones. Again, system
(30) is equivalent to finding the family of vectors (uK )K∈M ⊂ Rd , and scalars (pK , TK )K∈M ⊂ R

such that for each control volume K of M

�uK − ��Ku + divK (u,u, �, p) + ∇K p = 1

mK

∫
K
f(x) dx + TKw

divK (1,u, �, p) = 0

�TK − 
�K T + divK (T,u, �, p) = 1

mK

∫
K
g(x) dx

(32)
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supplemented by the relation ∑
K∈M

mK pK = 0

One should note that, thanks to (31), one has two ways of implementing the scheme (32). These
two ways are not equivalent from the point of view of the convergence properties of the numerical
algorithms described in Section 4.1.

Theorem 3.1 (Convergence of the scheme)
Under hypotheses (14)–(15) and (28), let (D(m))m∈N be a sequence of admissible discretizations
of � such that hDm tends to 0 as m → ∞ and such that there exists �>0 with regul(D(m))��,
for all m ∈ N (see definitions in Section 2.1). Let � ∈ (0, +∞) and � ∈ (0, 2) be given. Then, for
all m ∈ N, there exists at least one solution to (30) with D=D(m) and � = �(m) defined by (8),
that we denote (u(m), p(m), T (m)) ∈ (HD(m) (�))d × HD(m) (�) × HD(m) (�). Moreover, there exists
(ū, p̄, T̄ ) satisfying (29) and a subsequence of (D(m))m∈N, again denoted (D(m))m∈N, such that
the corresponding subsequence of solutions (u(m), T (m))m∈N converges to (ū, T̄ ) in L2(�) and
(p(m))m∈N weakly converges to p̄ in L2(�).

Proof
Several keypoints of the proof of this convergence result may be found in [20], where we showed
the convergence of the scheme for the isothermal Navier–Stokes equations. The main differences
with [20] are the fact that we have to handle the additional convection–diffusion equation on the
temperature, and that we do not use the Bernoulli pressure thanks to definition (7) of the discrete
divergence, which includes the stabilization pressure term. Let us then notice that, thanks to (31),
we get∫

�
u(x) · divD(u,u, �, p)(x) dx= 0 and

∫
�
T (x) divD(T,u, �, p)(x) dx= 0 (33)

Hence, taking u= v in the first equation of (30) and S = T in the last one, we get the estimate


‖T ‖D�diam(�)‖g‖L2(�) (34)

and therefore

�‖u‖D�diam(�)

(
‖f‖L2(�)d + |w|diam(�)



‖g‖L2(�)

)
(35)

and, thanks to (8),

�h�
D

1

2

∑
K∈M

∑
L∈NK

mK |L
dK |L

(pL − pK )2

�diam(�)

�

(
‖f‖(L2(�))d + |w|diam(�)



‖g‖L2(�)

)2

(36)

We then deduce the existence of C1, only depending on d , �, �, �, �, 
, w, and �, and not on hD
such that

‖p‖L2(�)�C1(‖f‖L2(�)d + ‖g‖L2(�) + (‖f‖L2(�)d + ‖g‖L2(�))
2) (37)
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in a similar way as in [20]. These estimates are sufficient to allow the application of the topological
degree method (see [20, Theorem 4.3]). Hence, for all m ∈ N, we prove the existence of at least
one solution (u(m), p(m), T (m)) ∈ HD(m) (�)d × HD(m) (�) × HD(m) (�) to (30) with D=D(m) and
� = �(m) defined by (8). These estimates also prove the existence of ū∈ H1

0 (�)d , p̄ ∈ L2(�) with∫
� p̄(x) dx= 0, of T̄ ∈ H1

0 (�), and of a subsequence of (D(m))m∈N, again denoted (D(m))m∈N,
such that (u(m))m∈N converges in L2(�) to ū, (p(m))m∈N weakly converges in L2(�) to p̄ and
(T (m))m∈N converges in L2(�) to T̄ . It remains now to prove that (ū, p̄, T̄ ) satisfies (29). Note
that div ū(x)= 0 for a.e. x∈ � is obtained in the same way as in [20]. The only new points to check
concern the right-hand side f + Tw instead of f, the additional equation and the nonlinear terms.
Since (T (m))m∈N converges in L2(�) to T̄ , the convergence to f+ T̄w of its discrete counterpart is
clear. Let u∈C∞

c (�)d be given. Let us prove that
∫
� PD(m)u(x)·divD(u(m),u(m), �(m), p(m))(x) dx

converges to
∫
� u(x) · div(ū⊗ ū)(x) dx as m → ∞.

For a given discretization D and for (u, p) ∈ HD(�)d × HD(�), defining � by (8), let us write∫
� PDu(x) · divD(u,u, �, p)(x) dx= T1(D,u, p) + T2(D, u, p) with

T1(D,u, p) = 1

2

∑
K∈M

∑
L∈NK

�K L(u, 0, 0)

(
uL + uK

2
· (u(xK ) − u(xL))

)

T2(D,u, p) =
∫

�
u(x) · GD(p,u)(x) dx

where we use the notation �K L defined in (7), and where the function GD(p,u) : �→ Rd is
defined, for all K ∈M and �∈EK , by the constant value GK ,�(p,u) in the cone DK ,� with basis
� and vertex xK such that

GK ,K |L(p,u) = 1

2

�h�
D

m(DK ,K |L)

mK |L
dK |L

(pL − pK )(u(xL) − u(xK )) ∀L ∈NK

and

GK ,�(p,u) = 0 ∀� ∈EK ∩Eext

We remark that, thanks to (36), GD(m) (p(m),u) converges to 0 in L2(�)d as m → + ∞. Hence
we obtain

lim
m→∞ T2(D

(m),u(m), p(m)) = 0

In the same way as in [20], we have

lim
m→∞ T1(D

(m),u(m), p(m)) =
∫

�
u(x) · div(ū ⊗ ū)(x) dx

Hence, the expression
∫
� PD(m)u(x) · divD(u(m),u(m), �(m), p(m))(x) dx converges to

∫
� u(x) ·

div(ū ⊗ ū)(x)) dx as m → ∞. For a given function �∈C∞
c (�), the convergence proof of∫

� PD(m)�(x) divD(T (m),u(m), �(m), p(m))(x) dx to
∫
� �(x) div(T̄ ū)(x)) dx asm →∞ follows sim-

ilar arguments. The convergence of [T (m), PD(m)�]D(m) to
∫
� ∇ T̄ ·∇� is proven in Proposition 2.4

of [20], and the convergence study of the corresponding right-hand side is straightforward. This
completes the proof of the theorem. �

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2045–2068
DOI: 10.1002/fld



2056 E. CHÉNIER ET AL.

Remark 1
Note that it is possible to prove a convergence theorem, similar to Theorem 3.1, in the case of
nonhomogeneous Dirichlet boundary and g= 0. We then consider the upstream approximation of
div(T̄ ū), given by

divupsK (T,u, �, p) = 1

mK

( ∑
L∈NK

(�K L(u, �, p)+TK − �K L(u, �, p)−TL)

)

where �K L(u, �, p) is defined in (7), and where, for all s ∈ R, we set s+ = max(s, 0) and
s− = max(−s, 0). In this case, it is possible to derive an L∞ estimate on T , which allows for
similar inequalities to (35) and (36), and then it is easy to conclude the convergence proof, follow-
ing the methods used in [13] in the case of the approximation by the finite volume method of a
nonhomogeneous Dirichlet elliptic problem. Note that the convergence of the scheme, keeping the
centered approximation (7) of divK (T,u, �, p) instead using divupsK (T,u, �, p), remains an open
problem, because the lack of a bound on the velocities prevents are from obtaining the stability of
the resulting centred convection diffusion scheme. Nevertheless, the centred approximation remains
stable in many cases, including the numerical tests given in Section 4.5.

4. NUMERICAL RESULTS

4.1. Practical implementation

Let us first comment on the nature of the different problems to be solved. Scheme (18) is a coupled
linear problem with a symmetric matrix, but scheme (32) is a coupled non-linear problem, the
Jacobian matrix of which is nonsymmetric (taking the opposite of the fluid mass conservation
equation). Our numerical choices are as follows:

1. The non-linear problem (32) is solved by a coupled under-relaxed Newton iteration method
(in order to avoid large variations of the unknown in one iteration, which could lead to the
divergence of the method). This implies that at each iteration, a linear system involving the
Jacobian matrix of the full non-linear system, must be solved, with four unknowns per control
volume in 2D and five in 3D. Several advantages are gained from this procedure: there is
no approximate Poisson problem to solve in order to compute the pressure (it is well known
that such a procedure induces the appearance of boundary layers), the method is completely
systematic and the programming easy; furthermore steady problems may be solved directly,
without using artificial transient problems.

2. The coupled linear systems are solved in our prototype, using either a direct solver (Gaussian
elimination without pivoting, for small tests) or a GMRES or BiCGSTAB method for large
ones with an incomplete LU preconditioning. These methods have been shown to be efficient
in all the test cases which are presented in this paper.

Another advantage of the numerical method that we have used is that the accuracy which is
requested in the linear system resolution can be linked with the residual at each Newton iteration,
which avoids wasting time in precise linear resolution when the Newton iteration is still far for
convergence.
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4.2. Study of the stabilization methods

We implemented the two stabilization techniques (8) and (9) for the steady and transient Navier–
Stokes equations with or without the energy equation [25]. Let us first show an example on
the importance of introducing a stabilization term in the numerical scheme. We consider the
case �= (0, 1) × (0, 1), � = 0, � = 1, and g= 0 (it corresponds to an isothermal case), and f
chosen such that (27) holds with T̄ (x, y)= 0, ū(1)(x, y)= −�y�(x, y) and ū(2)(x, y)= �x�(x, y),
computed from the potential �(x, y)= 600[x(1 − x)y(1 − y)]2, the pressure being given by
p̄(x, y)= 100(x2 + y2 − 2

3 ), for all (x, y) ∈ �. We then obtain that the numerical solution
obtained for the velocity is accurate whatever the method and the magnitude of stabilization. On
the contrary, it is clear from Figure 2 that the pressure field suffers from severe oscillations when
� = 0 or is close to 0; these results are obtained using the cluster stabilization (9) (the clusters are
shown in Figure 3), but a similar behavior on the pressure is obtained with the Brezzi–Pitkäranta
stabilization.

Let us compare the two stabilization terms, respectively, given by (8) and (9). An advantage
of (8) is that it leads to an easier mathematical analysis of the convergence of the scheme, but a
drawback is that it yields some redistribution of the fluid mass over the whole domain. Moreover,
in order to obtain convergence, one needs to let the stabilization parameter tend to 0 with the
size of the mesh hD (hence the expression of the stabilization term in (8)). On the contrary, in
the stabilization term given by (9), there is no need to let � tend to 0 with the size of the mesh,
which means that the presence of a finite stabilization does not decrease the quality of the approx-
imation. Let us show this property on the backward-facing step example at Reynolds number 800

Figure 2. Pressure field for different values of � (from the left to the right: 0, 10−6, 10−4, 10−2).

Figure 3. Mesh (left) and clusters (right).
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Figure 4. Isovalue lines of u(1) for the backward-facing step (the step is visible at the lower left part of
the figure) with Re= 800. The dashed lines correspond to the isovalue u(1) = 0 line.

(the complete data are presented, for example, in [26]). We show in Figure 4 the computed isovalue
lines of the horizontal component of the velocity u(1), obtained for a mesh of 6300 cells. Roughly
speaking, the isovalue lines u(1) = 0 (dashed in Figure 4) separate the two recirculation vortices;
the determination of this isoline therefore allows the evaluation of the reattachment lengths of both
vortices. We then study the effect of the stabilization term on these reattachment lengths. In order
to do so, we consider a given mesh and decrease the stabilization term. This effect is shown in
Figure 5, where we draw the values of both reattachment lengths computed with the same mesh,
as a function of the value of the ‘weight’ of the stabilization, that is the global value of �h�

D

in (8), and � in (9). We see that, as the stabilization value increases, the reattachment lengths
obtained with the Brezzi–Pitkäranta stabilization decrease much more than those given by the
cluster stabilization. This shows that, in the case of problems requesting a high stabilization level,
the numerical results expected using the cluster stabilization remain more accurate. The adaptation
of the convergence proofs to the cluster stabilization is the object of recent works [23, 24].

4.3. Numerical confirmation of the convergence study

Let us first emphasize that the order of convergence of a numerical scheme must be distinguished
from the consistency order, obtained by introducing in the numerical scheme an analytical solution
taken in some points: we noticed above that, for example, we do not require that the approximate
gradient of pressure be consistent. Indeed, the definition (11) is not consistent in the general case
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Figure 5. Reattachment lengths for different stabilization parameters. The dashed lines correspond to the
Brezzi–Pitkäranta stabilization and the continuous ones to the cluster stabilization.

and we only require that it is the transpose of the discrete divergence approximate. Moreover, as
mentioned above, the orders of convergence that were mathematically proven (see Theorem 2.2)
are hopefully much lower than that of the observed numerical orders of convergence.

Indeed, let us first consider the well-known transient Green–Taylor analytical solution (isothermal
case), in the square domain � = (−0.5, 0.5) × (−0.5, 0.5), given by

ū(1)(x, y, t) = − cos(�x) sin(�y) exp(−2�2t/Re)

ū(2)(x, y, t) = sin(�x) cos(�y) exp(−2�2t/Re)

p̄(x, y, t) = −cos(2�x) + cos(2�y)

4
exp(−4�2t/Re)

where Re is the Reynolds number. The initial and boundary conditions are deduced from the exact
solution. We consider the case Re= 10, and we compare the approximate solutions given by the
collocated scheme using the cluster stabilization (9), discretized by the Crank–Nicholson method,
with the analytical ones at time t = 0.3, for rectangular meshes with, respectively, 400, 1600, 6400,
and 25 600 control volumes, keeping the time step equal to 0.001. We then plot in Figure 6 the
L2 norms of the errors e(u) and e(p) between the computational and the analytical solution, for
these different meshes. We observe that the order of convergence, given by the slope of fitted lines
on these curves, is close to 2 for the velocity, and 1 for the pressure. We study in a similar way
the error as a function of the time steps, on a 160× 160 rectangular mesh. The L2 norms of the
errors e(u) and e(p) are plotted in Figure 7, showing a similar order of convergence as in space.

Since there is no straightforward analytical solution with null right-hand side in the case of non-
isothermal problem, we considered a steady problem (�= 0) where a divergence-free analytical
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Figure 6. L2 norm of error (left: velocity, right: pressure) for different space steps.

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9
-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

lo
g 1

0(
||e

(u
)||

) L
2

log10(∆t)
-2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9

log10(∆t)

lo
g 1

0|
|e

(p
)||

L2

Figure 7. L2 norm of error (left: velocity, right: pressure) for different time steps.

solution is arbitrarily chosen, and the right-hand sides f and g are the residual of the continuous
Boussinesq and energy equations without source terms. Hence, we define the scalar potential � as
in [27], by

�(x, y)= sin2(�x) sin2(�y)

the temperature and the pressure fields are, respectively, given by

T̄ (x, y) = sin2(�x) sin2(�y)

p̄(x, y) = sin2(�x) sin2(�y)

and the velocity field is given by

ū(1)(x, y) = ��

�y
= 2� cos(�y) sin(�y) sin2(�x)
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Figure 8. Example of a Delaunay mesh.

Table I. First and second reattachment lengths for Re= 800.

First vortex Second vortex

Armaly et al. (experimental results) [28] 14.2 20.0
Chiang et al. [26] 12.3 20.8
Kim and Moin [29] 12.0
Kaiktsis et al. [30] 11.9
Centred staggered scheme [17] 13.3 20.6
Collocated scheme 12.0 19.9

ū(2)(x, y) = −��

�x
= − 2� cos(�x) sin(�x) sin2(�y)

Choosing the cluster stabilization (9), we set � = 0.001, �= 
 = 1, w is the unit vertical vector
pointing upward. We proceed in the same way as we did for the Green–Taylor analytical solution,
computing the order of convergence for variable space steps. We found an order 2 convergence
for the velocity, the temperature, and an order 1 for the pressure in the case of rectangular meshes
or Delaunay meshes (see Figure 8 for an example of such a mesh).

4.4. Comparison with other methods

Let us first again consider the same backward-facing step problem as the one used in Section 4.2
for the study of the effects of the stabilization method. We apply the collocated scheme, using a
mesh with 109 050 triangles. In Table I, we provide the first and second reattachment lengths in
the case Re= 800 given in the literature, together with ours. We observe that our results show an
excellent agreement with that obtained by other methods.

Let us now turn to the 3D lid-driven cavity test case. The considered domain is the unit cube,
and we consider two values for the Reynolds number (Re= 400 and 3200). We compare the
profiles of some components of the velocity along median lines with that given in [31] with 97 336
control volumes (finite volume method on unstructured meshes). We use a simple 36× 36× 36
parallelepipedic mesh with refined sides along the boundaries of the domain. The stabilization

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2045–2068
DOI: 10.1002/fld



2062 E. CHÉNIER ET AL.
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Figure 9. 3D Lid-driven cavity.

parameter is taken equal to 10−5. We observe in Figure 9 that the results obtained by the collocated
scheme and those given in Reference [31] are very close.

4.5. Natural convection between two cylinders

We consider the natural convective flows between two horizontal cylinders where the surface of the
inner cylinder is heated. Such a configuration is, for instance, a model for thermal storage systems.
An important industrial problem is therefore to control the heat transfer, either to enhance or to
reduce it. Major published works have considered fluid flows and heat transfer between concentric
cylinders [32]. A simple way to modify the thermal performances is to change the geometry and
for instance by introducing an eccentricity in the annular space.

The geometrical characteristics of the cavity are defined by the inner Ci and outer Co cylinders
of radii r∗

i and r∗
o , by the eccentricity 	∗ and by the eccentricity angle 
	 (Figure 10). In our study,

uniform temperatures T ∗(Ci) = T ∗
i and T ∗(Co) = T ∗

o are imposed on the no-slip cylinder walls
(which means homogeneous Dirichlet boundary conditions for the velocity). The flow is assumed to
be 2D, steady, laminar, and incompressible with constant physical properties except for the density
when formulating the buoyancy effect. We then scale the lengths by the annular gap d∗ = r∗

o − r∗
i ,

the velocity components by the ratio between the thermal diffusivity and d∗, we introduce the
dimensionless difference temperature T̄ = (T ∗ − T ∗

r )/(T ∗
i − T ∗

o ) where T ∗
r = (T ∗

i + T ∗
o )/2 is the

reference temperature. The dimensionless Navier–Stokes and energy equations are then given by
(27) in which f= 0, � = 0, g= 0, � =Pr, 
 = 1 and w=RaPr e(2), where Ra and Pr are the
Rayleigh and Prandtl numbers and e(2) is the upward vertical unit vector. The boundary conditions
for the temperature are then non-homogeneous Dirichlet boundary conditions (T̄ = 1/2 on Ci and
T̄ =−1/2 on Co). We denote the radius ratio by R = r∗

o /r∗
i , the dimensionless eccentricity by

	= 	∗/d∗, and the eccentricity angle by 
	.
Voronoı̈ tessellations are used to mesh the annular space. This choice meets the definition of an

admissible mesh, since the straight line joining the centers of two adjacent cells is orthogonal to
their common edge (see Section 2.1). Since the cell centers are mainly located at the vertices of
equilateral triangles, most of the resulting Voronoı̈ cells have hexagonal shapes. To adjust the mesh
to the natural convective flows, cells with a smaller hexagonal size were used along the cylinder
walls, in a layer of thickness � = �∗/d∗, and in an angular sector 2� around the inner cylinder
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Figure 10. Geometry.

(a) (b)

Figure 11. Voronoı̈ tessellations based on hexagonal cells and partition of the computational domain into
clusters: (a) mesh and (b) clusters.

where a thermal plume and higher velocity occur (Figure 10). The cells in the boundary layer and
in the angular sector are twice smaller than the cells which define the basic hexagonal cell size.
An enlargement of such a mesh is presented in Figure 11(a).

We use the cluster stabilization method (9), initializing the clusters by control volumes having
one common vertex. Figure 11(b) illustrates the partition into clusters of the mesh shown in
Figure 11(a).

The heat transfer is measured by the mean Nusselt number at the inner cylinder

Nui = 1

2�ri

∫
Ci

∇ T̄ (x) · n��(x) ds(x)

where ri = r∗
i /d∗ and n��(x) is the normal outward unit vector at point x∈Ci. For coaxial

cylinders and moderate Rayleigh number values, the flow field consists of 2D crescent-shaped
cells, symmetrical with respect to the vertical straight line containing the centers of the cylinders.
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Figure 12. Isotherms of the steady solutions, 	= 0.

Figure 13. Isotherms of the steady solutions, 	= 0.5 and 
	 = 0, 45, 90, 135 and 180◦.

When the eccentricity is non-zero and 
	 
= 0◦, 
	 
= 180◦, the vertical symmetry of annular space
is broken and a fluid flow occurs around the inner cylinder. This flow rate is computed by �Ci

with � the stream function defined by u(1) = ��/�y, u(2) =−��/�x and �Co
= 0.

The effects of the eccentricity and eccentricity angle are studied for a radius ratio R = 2, a
Rayleigh number value Ra= 104, and a Prandtl number value Pr= 0.7. The angular sector and
the thickness of the boundary layer, where the cell size is half the basic hexagonal cell size, are
equal to 2� = 270◦ and � = 0.2. The basic hexagonal cell size 0.03 is classically adopted for the
simulations.

In Figures 12–14, the isotherms are drawn as a function of 
	, for 	= 0, 0.5 and 0.95. Continuous
and dashed lines correspond to positive and negative temperature values, respectively. As foreseen,
the isotherms are no longer symmetric when 
	 
= 0◦ or 
= 180◦ and 	>0. For 
	�90◦, a thermal
plume develops above the hot cylinder. On the other hand, the temperature field is rather convected
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Figure 14. Isotherms of the steady solutions, 	= 0.95 and 
	 = 0, 45, 90, 135 and 180◦.
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Figure 15. Mean Nusselt number at the inner cylinder, Nui as a function of 	 and 
	.

from the lateral region of the inner cylinder when this latter one is located in the upper region
of the outer cylinder, namely for 
	>90◦. When the cylinders are close, the Rayleigh number
based on the smallest gap between the two walls is small, and a conduction thermal regime is
therefore locally expected. Figure 15 illustrates the mean Nusselt number at the inner cylinder,
Nui, as a function of 
	 and 	. The heat transfer is weakly affected by the eccentricity angle
and the eccentricity if 	<0.5. Conversely, the mean Nusselt number is doubled between 	= 0.5
and 0.95. The symmetry breaking of the geometry with respect to the vertical line containing the
center of the outer cylinder generates a fluid flow circulation around the inner cylinder for which
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Figure 16. Dimensionless flow rate around the inner cylinder, �Ci
as a function of 	 and 
	.

the dimensionless flow rate is measured by �Ci
(Figure 16). The circulation is maximal for large

eccentricities and when the inner cylinder is in the upper region of the outer cylinder. It is, however,
clear that if both cylinders are too close, the fluid flows with difficulty around the hot cylinder and
even cannot pass when they are side by side. In this limit case, the regularity of the boundary of the
domain decreases, the boundary condition is no longer given by the trace of a regular function, and
the convergence of the scheme is far from being proven. (The distance between the two cylinders
should be discretized by a sufficient number of layers of control volumes, which maybe not the
case in our computations near the limit case.) As it can be observed in Figures 15 and 16, some
values seem to exhibit spurious variations as a function of 
	 and 	. For example �Ci

decreases
sharply in the vicinity of 
	 ≈ 140◦ and 	≈ 0.5. One could also wonder whether this behavior
might be explained by the occurrence of bifurcations, and a stability analysis of the steady flow
should be conducted to confirm the appearance of transitions in the fluid flow.

5. CONCLUSIONS AND PERSPECTIVES

Collocated schemes for the incompressible Navier–Stokes equations were analyzed and imple-
mented on unstructured meshes. The collocated scheme was shown to converge for the Navier–
Stokes equations under the Boussinesq approximation; it can handle some cases with a complex
geometry, as the problem of natural convection between two cylinders with eccentricity, using
unstructured meshes such as Voronoı̈ tessellations or triangular meshes. However, the Brezzi–
Pitkäranta stabilization method was found to be more sensitive to high Reynolds numbers on tests
such as the backward step. The cluster stabilization was then implemented and it dramatically
improved the stability of the collocated scheme (in fact, clustering leads to large-scale grids for the
pressure). Work is in progress concerning the convergence analysis of the scheme with clustering
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and of the viscous tensor term in the compressible case. The case of non-constant viscosity also
needs to be addressed.
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22. Brezzi F, Pitkäranta J. On the stabilization of finite element approximations of the Stokes equations. Efficient
Solutions of Elliptic Systems, Kiel, Notes of Numerical Fluid Mechanics, vol. 10. Vieweg: Braunschweig, 1984;
11–19.
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